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Some Properties of Maximum Likelihood Strategy
for Re-Pairing Broken Random Sample'?

By Prem K. Goel & T. Ramalingam
The Ohio State University and Northern lllinois University.

Abstract

Matching data from a bivariate population is considered when observations are
available only in the form of a broken random sample. In other words, a random
sample of n pairs is drawn from the population but the observed data consist of n
observations on the second component and the n observations on an unknown
permutation of the first component of the n pairs of data. A maximum likelihood
matching strategy is revisited. The proportion of approximately correct matches (due

to Yahav) is used to evaluate the performance of the pairing strategy as n— oo. The
small sample behavior of this proportion is studied via a Monte-Carlo simulation in the
special case of bivariate normal parent population.

Keywords and Phrases: Matchirg Problem, Maximum likelihood pairing,
asymptotic properties, exchangeability, € -matching,
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. Some Properties of Maximum Likelihood Strategy
r for Re-Pairing Broken Random Sample
By Prem K. Goel & T. Ramalingam
o The Ohio State University and Northern lllinois University.

1. Introduction. An important tool for analyzing economic policies is the
microanalytic model. Many Federal agencies use such models for the evaluation of
b policy proposals. When all the input-data for the model come from a single source,
' the quality of the model depend on, among others, how complete the information is on
jointly observed variables. Often times, the input for the model consists of data from
more than one Federal Agency. For instance, to make-up for 'gaps' that occur in
decennial Census, the Bureau of the Census and the Internal Revenue Service
provide marginal information on variables. However, joint information on these
| variables is not available to either of the two agencies. In such cases, Federal
¥, statisticians use file merging methodology in order to produce comprehensive data on
‘ variables of interest. A review of the origin, progress and recent developments of this
methodology is given in Radner et al (1980).

An unified frame work for all such models for the file-merging methodology and
statistical properties of some of them are given in Ramalingam (1985) and Goel and
Ramalingam (1985). One useful model for obtaining matched pairs, introduced by
DeGroot, Feder and Goel (1971) is as follows: Let W; = (T, U;), i=1,2,...n be iid

random vectors which are not observable as (t, u) pairs. Instead,it is assumed that the
marginal data on t and u are available on these n individuals as follows.

n oAy

s

; g

’I am s A s

File 1: x4, X2,....... Xpn. which is an unknown permutation of the unobserved
values tq,...tn .

File 2: uy, up,...,up .

:j Thus data in File 1 is available at one agency and the data in File 2 is available
' at the other agency. Clearly , what is missing from the conceptually unobserved values
on (t,u) is the pairing which, identifies the t; and uj that pertain to the same individual.

DeGroot, Feder and Goel (1971), call the margina! observed data X1,...Xn ; Uq,....Un @
Broken Random Sample from the population of (T,U).

ST I

in this paper, we shall derive some statistical properties of known stategies to
merge File1 and File 2 in order to reconstruct paired data on (T;,Uj) for the bivanate

matching problem in which both T and U are one-dimensional variables. We shali
begin with some notations.

*.

eAY

1.1 Notations. Let (T,U) have an absolutely continuous joint CDF H(t,u) and joint
density h(t,.). The marginal dis'ribution functions of T and U will be denoted by G( . )
and F( . ) respectively and | [.] w'l denote the indicator function of the event.
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Let Gp (x) = (1/n ) 3, | [Ti £ x] denote the empirical CDF based on the
variables Tq...., Tp. Similarly, Fp (x) denotes the empirical COF based on Uy.,..., Up.

Let R(i) = X o 1 [T |2 T o ] denote the rank of T; ,i=1,2,...,n. Similarly S(1), ..., S(n)
denote the ranks of the variables U4,U,, ...,Up.

Let ¢ = (¢(l),..., p(n) ) be a permutation of the integers 1,2,...,n. The set of all n!

permutations of 1,2,...,n will be denoted by ¥. Let ¢" = (1,2, ...,n) denote the identity
permutation.

Lete20.Foralli=1,2,..n,and pec¥ define events Apj (@, ) and A, (e) as
follows:

Ani(q’,8)5{|U(¢(R(i)))-Ui | <€} (1.1)

Ani(€)=Ani(@*¢e). (1.2)

Forall 1< jk< n,let

Il

E_,1jk |[UJ‘-Uk2 e]-I[TJ'-TkZO], (1.3)

§2jk = I[Tj-Tk20]- HUj-Uk2-¢], (1.4)

and By =g P2 denotes that the vectors B1and B2 have identical distributions.

2. A Class of Matching Problems. Suppose that h(t,u) has the monotone
likelihood ratio (MLR) property. That is, for all reals t1 <to and uq < us , we have

h(ty, u1) hitz, up) 2 hity,up) hita,uy). (2.1)

If the broken random sample x1,..., Xp,Uq,..., Un comes from h(t,u), a typical
‘matching strategy’ based on permutation @ € ¥ can be described by pairing xj ywith
Uio(i))- Generalizing the results of DeGroot,Feder & Goel (1971), Chew (1973) showed
that if the MLR property (2.1) holds, then the strategy which maximizes the likelihood
I, h(xj.ugp(i)) ot the parameter ¢ over ¥, is to pair the ith smallest x with the ith smallest
u. Note that, though the pairings in the unobserved sample (T;,Uj), i=1,2, ..., n are
unavailable, the order-statistics of the marginal data on X and U are respectively the

C e Ta Vg ¥
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same as the ordered values of T and U . Hence, we can write the mergea file on (T,U)
due to any strategy @ as

(T (i) » Y (o)) 0,2,...,0 (2.2)

Consequently, the 1crged file based on the maximum likelihood pairing (MLP)
mentioned above, is obtained by letting ¢ = ¢*in (2.2).

Quality of the Merged File. Ideally, we would like to select a ¢ for whicr the file
in (2.2) recovers all (T,U) pairs in the original unobserved data. It is therefore natural to
consider the random variable N ( ¢) , the number of correct matches due 1o ¢, as an
indicator of the performance of the matching (merging) strategy ¢. The optimaiity of ¢
subject to various criteria, e.g., maximizing the expected number of correct matches,
E (N( @), is discussed in Ramalingam (1985).

Situations often arise where it is not crucial that, after the two files are merged,
the matched pairs be exactly the same as the pairs of the original data. For example,
when contingency tables analyses are contemplated for grouped data on continuous
variables T and U then, in the absence of the knowledge of the pairings, we would like
to reconstruct the pairs but would not worry too much as long as the u-value in any

matched pair came within a pre-fixed tolerance € (a non-negative number) of the true
u-value that we would get with the ideal matching which recovers all the original pairs.
This type of ‘approximate matching' was first introduced by Yahav (1982} who defired
€ -correct matching as follows.

Definition 1 (Yahav) . A pair (X(i).uw(i))).1 in the merged file (2.2), is said to be ¢ -

correct, if | Ue () - Y[i] | <e,wheree >0 and Upi) is the concomitant of X;); thatis the
true u-value that was paired with T(i) in the original sample.

The number of € -correct matches N (g, €), in the merged file (2.2) is given b\
N((p,t:):ZiI[IU((p(i))-U[i]|S€] (2.3)

Note that as ¢ { 0, N(@,e) converges (almost surely) to N(¢) ,the numbe of exact
matches.

The counts N(¢) and N(¢,e) are useful indices reflecting the re' .pility of the
merged file (2.2) resulting from ¢. We shall now derive some statisticz properties of

N(¢ *,e) /n. In view of the fact that Federal files often consist of a ' .rge number ot
records, it is clear that these asymptotic investigations are useful.
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3. Asymptotic behavior of N(¢*,e). We first establish a representation for N(@,¢)
as a sum of exchangeable 0 -1 random variables. This representation will lead to an

easy proof of the convergence in probability of the proportion, N(¢*,€) /n, of € -correct
matches due to MLP strategy. The following Lemma(See Randles and Wolfe (1979),
Theorem 1.3.7, page 16) will be needed.

Lemma 1.1t §=q v and K (.) is a measurable function (possibly vector valued) defined
on the common support of these random vectors, then K(§ ) =q K(v )

Proposition 1. Let Apj(® ,£) and N(¢ &) be given by (1.1) and (2.3) respectively. Then,
for all pe ‘¥

N(®.€) =2 [Ani(P£)] (3.1)
where the summands, | [Ani(¢ ,€)] are exchangeable binary variables.

Proof. The order-statistic U((p (i) and the concomitant U[i] of T(i) used in (2.3) can be
written in terms of the ranks of T's and U's as follows:

Uio (i = £ o U H {Roo = ()] (3.2)
Uij=ZaUg![R1g=i] (3.3)

Note that N(g,e ) is simply a count of how many pairs in the merged file based on ¢, as
defined in (2.2), satisfy

| Ue () - Ui | <e. (3.4)
If (3.4) holds for some i, then 3 aj such that
| Ul (i) - Yj | <e. (3.5)

In view of the continuity of (T;,U;), this correspondence is one-to-one. Theretore, the
count N(g, £ ) is same as the count given by

N(@,e)=2,, l[lU(Q(R((,)))-UGISE] (3.6)

Hence, (3.1) follows from (3.6) and the definition of Ap;, in (1.1).

B T A L “ onn
Tt Ty > [ l' f -'
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In order to show the exchangeability of the summands in (3.1), note that the
original samples are independent and identically distributed vectors. Therefore

{Wo (1) Wo2) - We n) }=d { W1, W2, . Wp } (3.7)
where ( a(l), a(2), ... a(n) ) is an arbitrary permutation of (1,2,..., n).

Define a function f = (f1,f5,...,f; ) from Z2nto RN by

1 iHZiloj-bize ]< ¢(Zjtlaj-2aj20]) <Ei1bj-bjz -¢ ]

f = (3.8)
0 otherwise ,

forj=1,2,...,n, where (a{,bq, ..., ap,bp) is an arbitrary point in A2N and ¢ € Y.lt foliows
from (3.7) and Lemma 1 that

f (Wa (1) Wa (2) ,...,Wa (n)) =d f (W] ,W2,...,Wn ) . (39)

Fixje {1,2,...,n}. Then, using (3.8), we see that ¢ i (Wo (1) Wo 2y -\ W (n) ) is the
indicator functlon of the event

2itUg)-Uize 1< @i T - Ti20]) s &1 {Ug (- Uiz € |

or, equivalently, in terms of the ranks Rq1,... R1p of the T's and the empirical CDF
Gp () of U's,

Gn (Ug G) - € ) < ((p(R1a(j))/n < Gp (U afj) + € ).

Since Gp 1(k/n) = U » k=1,2,...,n, it follows that i (W 1) W (2) oW (ny ) i 1 iff
| Uy (R1 o(j)) - Y a(j)l <e. Consequently,

fi (W (1) » Wee2) v Wa(ny ) = HAng () (@)l (3.10a)
Similarly,

fi (W1, ...\ Wp) =1 [Anj (@)]. (3.10b)
The exchangeability of the summands in (3.1) follows from (3.9), (3.10a) and (3.10b).

We shall now review some results concerning E [N (¢ )/n] , due to Yahav (1982),
where N(c ) = N (¢ *,€). Assuming that the distribution of T and U satisfies:

the conditional distribution of U given that T=t is (univariate) normal with
mean t and variance 1,

Yahav (1982) derived the limiting value of up (¢ )=E [N (¢ )/n] as n — <« by using the
representation (2.3) in which the summands are funcuons of the order-statistics of

AN N N -.).-) \-'({‘ e '\"\iﬁ\" N I OC AT A N \'r\.r _,."r'. ',._,. .,._,._,. G
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Uq...., Un and the concomitants of the order-statistics of T1, ..., Tn. His proof relied on

an approximation theorem, about the order-statistics for the above model, givern in
Bickel and Yahav(1977). Furthermore, he also reported the findings of a Monte-Carlo

study for pup(e) in a particular case of his model, namely, T and U are bivariate normal
with correlation p .

We now establish the large-sample behavior of N (€ )/n in case of samples from

an arbitrary population. The properties of its expected value follow as a consequence.
In section 4, we indicate how Yahav's simulation study of the small-sample properties

of un(e ) can be improved upon. We shall then present the results of our Monte-Carlo
study of 1up(e ) when nis small.

Theorem 1. For broken random samples from an absolutely continuous distribution,
N{e )/n —pr M(e ), asn-—oee (3.11)
where

wEe)=P[G(U-g)< F(T) < G(U+¢)] (3.12)

Proof: Let Lp = N (¢ )/n. Using the definitions of Api(e ) in (1.2) and the representation
(3.1) for N (¢ ) as a sum of exchangeable binary variables we obtain

N(e)=2i1{Ani(e)]. (3.13)
it follows that
E(Lp)=nP (An1(e ))n=P (Ap1(e ). (3.14)
Note that
E (Ln?) = n 2 [E(N(e )) @) + E (N(e ))] (3.15)

where E (N(e )) (2) is the second factorial moment of N(e ). Using the representation
(3.13), we get

E (Ln2) =n"2[n(2) P{An1(e) An2(e ) }+n P(An1(e))]-
Foro =1.2....,n, and j=1,2 let
Via =Zi §jai (3.16)
where the sequences {£14} and { &2} are defined in (1.3) and (1.4). It follows that
Ani(e )=(v11/n<0,voy/n<0) (3.17)

and
An1(e ) Anole )=mif\j (vijfns 0). (3.18)
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Note that, given W{= (t1,uq) , the infinite sequence 112, £113.... is exchangeable.

Hence, by the Strong Law of Large Numbers for exchangeable random variables (see
Chow and Teicher,1978, p.223),

vii/n— E@E112 1 Wy) as. asn— o,

where the conditional expectation is equal to {G(u¢- € ) - F(t1)}. It follows that

viy /n > G(Uq-e )-F(Ty),as. asn—eo. (3.19)
We can show by similar arguments that

Vig 'n > GUg-€ )-F(T4 ), as. (3.20)
and
Vo, N = F(T 4 )-GU,+¢),as, (3.21)

where o =1,2. Using the fact (see Serfling, 1980, p.52) that a sequence of vectors
converges almost surely to a given vector iff the componentwise sequences converge
almost surely to the appropriate components of the limit, we get from (3.20) and (3.21)

viy/n G(Uq-¢e )-F(Tq)

Vo1 /N - F(Tq1)-G(Uq +¢€) a.s. (3.22)
vi2/n G(Uz-¢) - F(T2)

Voo /n F(Tz) - G(U2 + £ )

It follows from (3.17), (3.18), (3.22) and the independence of Wiand Wy that

P(An1(e )) - u (€) (3.23)
and
P(An1 () An2 (€)) = 12 (e). (3.24)
Therefore (3.14), (3.15) and (3.23), (3.24) imply thatas n — <,
E(Lp) = u (e ), (3.25)

and
Var(Lp) — O. (3.26)

It is well known that (3.25) and (3.26) imply the convergence in probability as n (3.11).

The following corollary generalizes Yahav's result concerning jip (¢ ), the first
moment of N(e )/n.
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Corollary1 . For p>0, Lp
(i) N(e)n — u(e) asn— oo
(i) E[(NE€)nP] — [uE)P 3N .

Proof. The number of € -correct matches can atmost be n, the number of pairs in the

unobserved bivariate-data. Therefore 0 < N(e )/n < 1, for alln =2,3,... and {N(e )/n} is a
uniformly bounded sequence of random variables. It is well known that convergence in
probability and Lp-convergence are equivalent for such sequences. Hence (i) follows

easily from Theorem 2. Now, (ii) readily follows from (i) because (u(e )P) is finite for
p>0.

Note that in our results, no assumption about the conditional distribution of U
given T has been made as was the case with Yahav's results.

4. Small Sample behavior of N(g). Yahav used simulated samples from a
bivariate - normal population with mean vector 0 and covariance matrix

p2  p2
T =(1-p2)1 . (4.1)
;)2 1

to study small sample properties of up(g). It is important to note that in (4.1), the

variances of T and U are functions of their correlation, p. This is so, because Yahav's
mode! requires that the conditonal distribution of U given T=t be normal with mean t

and variance 1. The limiting value of un(€) for his particular model is given by:
ue) =l (@ (xap) +e/p)- O(x alp) - €/p )} dd(x), (4.2)
where a(p) = [ (1- p )/(1+ p)]V2.

Yahav computed u (¢) by numercal integration for e = 0.01, 0.05, 0.1 & 0.3.
However, it can be shown that (4.2) simplifies to

() =120 [((1+p)2)V2) e /p ] (4.3)

Yahav also provided Monte-Carlo estimates of pp(e ), for n = 10, 20,50 and 100

using the simulated data on T and U. Table 4.1 is a typical example of one of his
resuits.
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Table 4.1 Expected Average Number of
€ -correct Matchings, & = .01

[Yahav(1982)]
Y H10(€) H20(€) Hs0(€) K 100(E)
.001 .5864 .5326 5275 5227
.01 .1984 .1648 1271 .1152
.10 1512 .1058 .0760 .0591
.30 .1084 .0686 .0389 .0214
.50 .1020 .0582 .0272 .0138
.70 .0960 .0614 0262 WJ105
.90 .0972 .0540 .0206 .0086
.85 .0976 .0496 .0214 .0083
.99 .0960 .0484 .0213 .0080

It is clear from Table 4.1 and equation (4.3) that un (¢ ) and u(e ) decrease as p
ranges from 0.001 to 0.99. In fact , (4.3) implies that pu (€)=1-2d(-¢) for p =1.0 and u(e) =
1.0 for p=0, which goes against the intuition. One expects that for an optimal strategy,
such as ¢*, py(e ) as well as p(e) must be monotone increasing in p .The problem here
is not with the MLP ¢*, but with the covariance matrix Z, defined by (4.1), used in
Yahav's model. Because, as p changes its value, so do the marginal variances of T

and U. In fact, as p — 1, the marginal variances — . To rectity this problem, we have
assumed a bivariate normal model for T and U with means zero, variances one and
the correlation p .

For each combination of four values of n, namely 10, 20, 50 and 100, and
twelve values of p , namely 0.00, 0.10 (0.10) 0.90, 0.95, 0.99; 1000 sample were
generated from the bivariate normal population using the IMSL Library routines.
These data were used to obtain Monte-Carlo estimates of up(c ), where ¢ was given
the values 0.01, 0.05,0.1,0.3,0.5,0.75, 1.0.

It is easy to show that, for the above model
we)=P(l 21 <e@-p?), (4.4)

where Z is a standard normal random variable. It is clear from (4.4) that p (¢ ) is a
monotone increasing function of p . Using standard-normal CDF tables, p (¢ ) in (4.4)
was computed for each combination of the twelve vaiues of p ard the seven values of
¢ mentioned above. The estimated values of i (€ ) and the limiting value p (¢ ) are
given in Tables A.1-A.7 in the Appendix.
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) Note that, as expected, pupn(e) and p(e) in Tables A.1-A.7 are monotone
increasing functions of p for each fixed €. Furthermore, the quality of the merged file is

quite good if we want to reconstruct contingency tables with intervals of size .5 ¢ or
more and the correlation p > 0.5.

APPENDIX

Table A.1 Expected Average number of

e -correct Matchings, e= 0.01

n H0(€) H20(€) Hs0(€) H100(€) H(e)
- 0.00 0.106 0.054 0.025 0.015 0.008
'; 0.10 0.113 0.059 0.028 0.017 0.008

0.20 0.127 0.068 0.03} 0.018 0.008
; 0.30 0.138 0.075 0.034 0.020 0.008
y 0.40 0.155 0.083 0.038 0.023 0.008
s 0.50 0.174 0.095 0.044 0.026 0.008
- 0.60 0.199 0.109 0.061 0.036 0.008
N 0.70 0.231 0.129 0.061 0.036 0.008
N 0.80 0.279 0.162 0.077 0.046 0.016
> 0.90 0.374 0.222 0.109 0.067 0.016
5 0.95 0.476 0.296 0.151 0.094 0.024
" 0.99 0.700 0.521 0.299 0.191 0.056
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e -correct Matchings, €= 0.05
p H1o(€) H20(€) Hs0(€) H100(€) u(e)
0.00 0.127 0.076 0.047 0.037 0.032
0.10 0.134 0.082 0.051 0.040 0.032
0.20 0.149 0.093 0.056 0.043 0.032
0.30 0.161 0.099 0.061 0.047 0.032
0.40 0.180 0.109 0.066 0.052 0.040
0.50 0.201 0.124 0.074 0.057 0.040
0.60 0.228 0.141 0.085 0.065 0.048
0.70 0.262 0.166 0.101 0.076 0.048
0.80 0.317 0.205 0.124 0.094 0.064
0.90 0.420 0.280 0.174 0.135 0.088
0.95 0.529 0.368 0.237 0.186 0.127
0.99 0.769 0.631 0.459 0.377 0.274
Table A.3 Expected Average number of
e -correct Matchings, €= 0.1
P H10(€) H20(€) Hso(€) H100(E) H(e)
0.00 0.154 0.102 0.075 0.065 0.056
0.10 0.160 0.110 0.080 0.069 0.056
0.20 0.177 0.121 0.087 0.074 0.064
0.30 0.189 0.130 0.093 0.080 0.064
0.40 0.210 0.143 0.101 0.0%8 0.072
0.50 0.234 0.161 0.112 0.096 0.030
0.60 0.264 0.181 0.127 0.108 0.088
0.70 0.302 0.210 0.149 0.126 0.103
0.30 0.303 0.258 0.182 0.154 0.127
0.90 0.477 0.347 0.254 0.218 0.174
0.95 0.594 0.452 0.342 0.299 0.251
0.99 0.839 0.744 0.630 0.580 0.522
o LNy -r ‘.r_.-,'.- v .r,;.,- o ‘I‘_ PG LA N PO ': T '. N L - '\'.r ‘-(.;.: ‘ J {_;-" O, .. \""-
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Table A.2 Expected Average number of
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Table A.4 Expected Average number of
e -correct Matchings, e= 0.3
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P Rig(€) Haq(€) Hs0(€) Hi00(€) He)
0.00 0.255 0.208 0.184 0.175 0.166
0.10 0.265 0.223 0.195 0.186 0.174
0.20 0.284 0.237 0.207 0.197 0.190
0.30 0.305 0.253 0.221 0.211 0.197
0.40 0.334 0.275 0.240 0.229 0.213
0.50 0.363 0.304 0.263 0.250 0.236
0.60 0.401 0.336 0.293 0.278 0.266
0.70 0.455 0.382 0.337 0.320 0.303
0.80 0.532 0.457 0.403 0.386 0.362
0.90 0.670 0.593 0.540 0.519 0.497
0.95 0.802 0.733 0.689 0.674 0.658
0.99 0.978 0.968 0.961 0.961 0.966

Table A.5 Expected Average number of
e -correct Matchings, £= 0.5

p H10(€) H20(€) Hs0(€) H100(€) H(E)
0.00 0.353 0.311 0.290 0.281 0.274
0.10 0.363 0.330 0.306 0.298 0.289
0.20 0.390 0.348 0.325 0.315 0.311
0.30 0.417 0.371 0.344 0.336 0.326
0.40 0.452 0.400 0.373 0.362 0.354
0.50 0.485 0.437 0.404 0.393 0.383
0.60 0.528 0.478 0.446 0.435 0.425
0.70 0.591 0.536 0.506 0.495 0.484
0.80 0.675 0.628 0.594 0.584 0.570
0.90 0.811 0.773 0.752 0.744 0.737
0.95 0.917 0.896 0.888 0.885 0.886
0.99 0.998 0.999 0.999 0.999 1.000
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é Table A.6 Expected Average number of
< e -correct Matchings, e= 0.75
: P e H20(®) Hso(e) H100(®) e
"
@ 0.00 0.468 0.433 0.416 0.409 0.404
. 0.10 0.488 0.454 0.437 0.429 0.425
3 0.20 0.514 0.477 0.461 0.453 0.445
W 0.30 0.539 0.505 0.487 0.480 0.471
¢ 0.40 0.582 0.542 0.522 0.514 0.503
e 0.50 0.621 0.586 0.560 0.555 0.547
- 0.60 0.662 0.633 0.613 0.606 0.59
< 0.70  0.727 0.694 0.679 0.673 0.668
¥ 0.80 0.810 0.786 0.772 0.768 0.766
~ 0.90 0.919 0.908 0.906 0.904 0.907
= 0.95 0.979 0.976 0.978 0.979 0.982
i; 0.99 1.000 1.000 1.000 1.000 1.000
% _
- Table A.7 Expected Average number of
23 g-correct Matchings, e= 1.0
\',
3 p Hio(€) H20(€) Hso(€) H100(8) u(e)
:f 0.00 0.570 0.545 0.531 0.524 0.522
", 0.10 0.593 0.566 0.555 0.549 0.547
- 0.20 0.621 0.595 0.581 0.576 0.570
-~ 0.30 0.646 0.622 0.611 0.605 0.605
‘ 0.40 0.690 0.664 0.650 0.644 0.627
2 0.50 0.729 0.707 0.691 0.688 0.683
W 0.60 0.772 0.753 0.744 0.741 0.737
070 0.830 0.812 0.807 0.805 0.803
& 0.80 0.898 0.889 0.887 0.885 0.886
< 0.90 0.970 0.970 0.972 0.972 0.975
E 0.95 0.996 0.996 0.997 0.997 0.998
A 0.99 1.000 1.000 1.000 1.000 1.000
N
N
N
n
%
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